A metric for factoring data movement into chasing the sun

Yibo Guo, George Porter
UC San Diego
Datacenters account for increasing energy usage and carbon emissions

https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/

Datacenters transitioning to a mix of energy sources

Figure 4, How Microgrids for Data Centers Increase Resilience, Optimize Costs, and Improve Sustainability, Schneider Electric
Low-carbon energy sources vary across time and space

Increasing renewables but more challenges

California’s increasing renewable deployment

More wasted solar/wind energy

Source: energy.ca.gov: Renewable Tracking Progress, Dec 2019

Source: https://www.eia.gov/todayinenergy/detail.php?id=49276
Low-carbon energy sources vary across time and locations

Moving workloads in space domain

Moving workloads in time domain

Source: https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
Focus not on reducing energy, but rather matching compute with low(er) carbon energy sources
Future computing: more varying renewables

- The future grid will depend more heavily on these varying renewables
- Stronger need to shift from fixed power model to varying power model
 - Economic incentives to use excess renewables
 - Heavy investment in solar/wind energy
- Need to make computing as flexible as possible
What would a totally solar powered datacenter look like?
Challenges of solar-powered data centers

1. How to schedule workloads across these data centers?
 a. Time-shifting is not enough: high solar curtailment during daytime
 b. Space-shifting is possible: moving compute is cheaper than moving electricity
 c. Challenge: need to make compute more flexible
Challenges of solar-powered data centers

1. How to schedule workloads across these data centers?
2. How to easily move workloads and what’s the impact?
 a. Latency-sensitive workloads: hard problem, e.g. QoS requirement
 b. Semi-flexible and batch workloads: slightly higher delay, but much lower carbon emissions
 c. How much overhead does moving a job incur?
Metric of interest: Energy moved per unit of data moved

Jobs are computation over data

- Higher input/output data size means more migration overhead
- Higher compute usage offsets the migration overhead

\[\text{compute-to-data-size ratio} = \frac{\text{Compute energy usage (CPU hour)}}{\text{data size (GB)}} \]

- **High migration cost**
 - Log aggregation
 - Database systems
 - Data compression

- **Low migration cost**
 - Pure compute job
 - Code compilation
 - ML model training
 - Bitcoin mining
How to reduce overhead of moving a job?

- Prefer moving energy intensive jobs
 - Consume more clean energy and pay less migration cost
- Reduce the amount of data to move:
 - Replicated dataset for fault tolerance
 - Shared/common input dataset
 - Pause/restart for multi-day jobs
- Application tracing and lineage capture to map workloads to the datasets they use (and find applications which share datasets)
- Deploy additional WAN bandwidth
Challenges of solar-powered data centers

1. How to schedule workloads across these data centers?
2. What’s the impact on each type of workload?
3. **How much additional capacity is needed?**
 a. Compute and network capacity
 b. Embodied vs operational carbon footprint
Capacity challenge and embodied carbon footprint

- Pure solar-powered data centers requires up to 3x servers, but
 - There are more stable renewables like wind/hydro/geothermal
 - We can keep old servers or overclock CPUs if we have excess solar power, to avoid additional embodied carbon footprint

- We need extra wide-area network bandwidth
 - But they are much cheaper than moving electricity via high-voltage lines
 - Existing studies have shown that high-speed transfer between data centers is possible, e.g. Skyplane NSDI’23
Summary

We can reduce operational carbon footprint by better utilizing renewables.

- Need for flexible computing: moving across time and space
- One metric to optimize: *Energy moved per unit of data moved*
- Careful profiling of workloads to reduce migration cost
- Balance between embodied and operational carbon footprint
Harnessing solar energy via globally distributed data centers

Yibo Guo, George Porter
UC San Diego
Varying carbon cleanness and time-shifting workloads

Figure 1, Wiesner, Philipp, et al. "Let's wait awhile: how temporal workload shifting can reduce carbon emissions in the cloud." Middleware. 2021.
Mitigating Curtailment and Carbon Emissions through Load Migration between Data Centers

Jiajia Zheng, Andrew A. Chien, Sangwon Suh
suh@bren.ucsb.edu

HIGHLIGHTS
Load migration can reduce renewable curtailment and GHG emissions

Existing data centers in the CAISO region can reduce up to 239 KtCO$_2$e per year

Net abatement cost can largely stay negative

Carbon-free energy sources are gradually increasing

Figure 5. Annual percentage of electricity generation by source

Source: Graph created by the U.S. Energy Information Administration (EIA), based on data from EIA’s Monthly Energy Review, October 2021.
Table 7.2a, Electricity Net Generation: Total (All Sectors);
Table 10.6, Solar Electricity Net Generation
California’s energy supply by source

Not enough demand

Not enough renewables

Not enough renewables
Challenges of solar-powered data centers

1. How to schedule workloads across these data centers?
2. What’s the impact on each type of workload?
3. How much additional capacity is needed?